	DU MPhil PhD in Bio Physics N				
Sr.No	Questi on Id	Question Descriptio n	Question Body	Options	
1	1	DU_J19_MP HIL_BIOPHY _New6july_ Q01	Which of the following is an organelle enclosed by a single membrane:	1:Lysosomes, 2: ribosomes, 3: mitochondria, 4:choloroplast,	
2	2	DU_J19_MP HIL_BIOPHY _New6july_ Q02	Chlorophyll consists of two parts, a metal ion of Magnesium and an organic portion termed as:	5:dextran, 6: globin, 7:porphyrin, 8:sphingolipid,	
3	3	DU_J19_MP HIL_BIOPHY _New6july_ Q03	Intellectual Property rights granted over creations like music, novels, paintings and cinematic work is classified as:	10: Copyright, 11: Trademarks, 12:Certification marks, 9:Creative patent,	
4	4	DU_J19_MP HIL_BIOPHY _New6july_ Q04	"Dextrose" is an example of which type of macromolecule:	13:protein, 14: carbohydrate, 15: lipid, 16:vitamin,	
5	5	DU_J19_MP HIL_BIOPHY _New6july_ Q05	The secondary structure of proteins is stabilized mainly via :	17:hydrogen bonds between the main chain atoms of the amino acids . 18: hydrogen bonds between the side chains of aminoacids , 19: hydrogen bonds between the main chain and side atoms of the aminoacids . 20:ionic bonds between side chain atoms of aminoacids,	
6	6	DU_J19_MP HIL_BIOPHY _New6july_ Q06	The genetic code is known to be degenerate with several three letter codons coding for the same aminoacid. How many codons code for the Methionine amino acid :	21:3, 22: 1, 23: 2, 24:0,	

7	7	DU_J19_MP	Which of the following is a method for determining the three	25:Isothermal Titration
		HIL_BIOPHY	dimensional structure of proteins.	Calorimetry,
		New6july		26: X-ray crystallography ,
		QU7		27: Dynamic light Scattering,
				28:Optical microscopy,
8	8	DU_J19_MP	In a NATIVE-PAGE experiment, the proteins are separated:	29:only on basis of their pI,
		HIL_BIOPHY		30: only on basis of their size ,
				31: only on the basis of their
		200		quaternary structure,
				32:both the basis of charge and
				size,
9	9	DU_J19_MP	A mRNA of about 1.5kb is expected to code for a protein of the	33:~ 500 amino acids,
		HIL_BIOPHY	following length:	34: ~ 200 amino acids,
				35: ~1000 amino acids,
		205		36:~ 1500 amino acids,
10	10	DU_J19_MP	Which of the following model organisms is used routinely in biological	37:Caenorhabditis elegans ,
		HIL_BIOPHY	sciences is actually a Frog:	38: Xenopus tropicalis ,
				39: Saccharomyces cerevisiae ,
		Q10		40:Danio Rerio,
11	11	DU_J19_MP HIL_BIOPHY	 The bacterial genome typically codes for about genes. Y 	41:4,000,
				42: 1,500,
				43: 15,000 ,
		Q++		44:40,000,
12	12	DU_J19_MP	Which of the followings DOES NOT have a membrane-enclosed	45:Archaea,
		HIL_BIOPHY _New6july_ 012	Y nucleus in the cell: -	46: Fungi,
				47: Yeast,
		Q12		48:Protist,
13	13	DU_J19_MP	You need a protein sample with concentration of 50mg/ml for your	49:Concentrate the sample to 500
		HIL_BIOPHY	Y experiment. You have 1000 μ L of this sample with protein	μL,
			the desired concentration?	50: Concentrate the sample to 100
		QIS		μL,
				51: Concentrate the sample to
				0.05 L,
				52:Concentrate the sample to 0.01
				L,

14	14	DU_J19_MP	You have a 5 M solution of NaCl, which needs to be diluted to 1 M	53:0.5 L,
		HIL_BIOPHY	concentration. How much water do we add to 100 ml of such solution	54: 0.4 L,
		New6july	to make it correct molarity?	55: 300 mL,
		QIT		56:500 mL,
15	15	DU_J19_MP	Proteins are known to undergo various modifications after their	57: ~20,
		HIL_BIOPHY	synthesis, known as post-translational modifications. How many such	58: ~200,
		New6july	variations are currently known:	59: ~2000,
		QIJ		60: ~5,
16	16	DU_J19_MP	Some proteins are known to carry out multiple functions in an	61: Universal proteins,
		HIL_BIOPHY	organism. Such proteins are known as:	62: Sunny proteins,
		New6july		63: Moonlighting proteins,
		QIO		64: Twinkling proteins,
17	17	DU_J19_MP	In the acronym "siRNA", the letter "si" stands for:	65: small ingestible,
		HIL_BIOPHY	(66: small interfering,
		New6july		67: short inhibiting,
		Q17		68: short mRNA interacting,
18	18	DU_J19_MP	In protein structure visualization programs, the nitrogen atoms are	69: Grey,
		HIL_BIOPHY _New6july_ 018	Y usually depicted in this color:	70: Yellow,
				71: Red,
		QIO		72: Blue,
19	19	DU_J19_MP	 In prokaryotes, the genes for related function are often present in genetic units that are regulated together. This arrangement is called as: 	73: a linkage group,
		HIL_BIOPHY		74: an Operon,
				75: a cistron,
		QIJ		76: a CDS,
20	20	DU_J19_MP	Which of the following techniques can be used to find the secondary	77:NMR (Nuclear Magnetic
		HIL_BIOPHY _New6july_ Q20	L_BIOPHY structure content of a protein molecule without any information of the lew6july_ three-dimensional structure information?	Resonance),
				78: Circular dichroism
				spectroscopy,
				79: Size exclusion chromatography,
24	2.4			80:X-ray crystallography,
21	21		DU_J19_MP Which of the following statements is CORRECT for double-stranded IIL_BIOPHY nucleic acids i. Two strands are associated by hydrogen bonds ii. New6july_ Sequences are complementary and antiparallel iii. The back-bones are made of phosphor-diester bonds iv. Numbers of hydrogen bonds between two nucleotides are not uniform	81:All of the above,
		New6july Q21		82: All of the above except (ii),
				83: All of the above except (iv),

				84:Only (i) and (iii),
22	22	DU_J19_MP	A double-stranded RNA genome isolated from a virus in the stool of a	85:15,
		HIL_BIOPHY	child with gastroenteritis was found to contain 15% uracil. What is the	86: 25 ,
			percentage of guarine in the viral genome?	87: 35 ,
		2		88:75,
23	23	DU_J19_MP	A gene encodes a protein with 150 amino acids. There is one intron of	89:1750,
		HIL_BIOPHY	region of 200bps. In the final processed mRNA, how many bases lie	90: 750,
		Q23	between the start and final termination codon?	91: 650,
		·		92:450,
24	24	DU_J19_MP	Western blot is used to probe	93:DNA,
		New6july		94: RNA,
		Q24		95:Protein,
		-		96:Single stranded RNA,
25	25	DU_J19_MP	Some cells in the adult animals do not divide (e.g., heart cells). These	100:G2 phase,
		New6july	cens enter an mactive stage of the cen cycle called as	97:G0 phase,
		Q25		98: G1 phase,
26	2.6			99: S phase,
26	26	DU_J19_MP	Which of following is not a protein	101: Spider web,
		New6july		102: Rhino horn,
		 Q26		103: Cobra venum,
27	27	DU 110 MD	To which of the following encoded dwig resistance is known to ecour	104: Jute,
27	27	DU_JI9_MP	In which of the following cases, drug resistance is known to occur	105: Mycobacterium tuberculosis,
		New6july		
		Q27		$100. \Pi V,$
				107. Caller,
28	28	DU 119 MP	What does pH 0 indicate?	100: All of the above,
20	20	HIL_BIOPHY		
		New6july		110. 1 molar concentration of OH-
		Q28		
				, 111: A very strong base.
				112: A buffer solution in which
				acid is aced,
29	29	DU_J19_MP	What is the advantage of glycolysis, since it taps only a small fraction	113:It may be used when oxygen
		HIL_BIOPHY	of the energy available in the glucose molecule?	is unavailable.,

		New6july Q29		 114: It is cyclical, so that less substrate is require, 115: It requires no investment of ATP., 116:It is composed only of spontaneous reactions
30	30	DU_J19_MP HIL_BIOPHY _New6july_ Q30	Which of the following statements are correctly describing the transport system found in plants? i) Xylem: water and nutrients from root to shoots:: Phloem: food synthesized in leaves to other parts ii) Xylem: upward movement only :: Phloem: Both up and down	117:Statements (i), (ii) and (iii) , 118: Statements (i), (ii) and (iv) ,
			movement iii) Xylem: outside of vascular bundle :: Phloem: centre of vascular bundle iv) Xylem: centre of vascular bundle : : Phloem: outside of vascular bundle	119: Statements (i) and (iv) only ,
				120:Statements (ii) and (iii) only ,
31	31	DU_J19_MP HIL_BIOPHY _New6july_ Q31	The attachment site for RNA polymerase on the DNA template is called as	121:Cistron, 122: Regulator, 123: Promoter, 124:Intron
32	32	DU_J19_MP HIL_BIOPHY _New6july_ Q32	High level of one hormone/protein results in diminution of a second hormone/protein. This phenomena is called as	125:Negative feedback, 126: Hermaphroditism, 127: Positive feedback, 128:Covariance,
33	33	DU_J19_MP HIL_BIOPHY _New6july_ Q33	The variable region of an antibody is primarily responsible for	129:Specificity to match the antigen, 130: Three-dimensional structure of antibody, 131: Transport of antibody to distant locations of body, 132:Disulfide bond formation,
34	34	DU_J19_MP HIL_BIOPHY _New6july_ Q34	Gram staining is an example of	133:Differential staining, 134: Acid fast staining, 135: Negative staining, 136:Spore staining,
35	35	DU_J19_MP HIL_BIOPHY	Kinetic Theory of Gases deals with	137: macroscopic properties of the system.,

		New6july Q35		 138: microscopic properties of the system., 139: both microscopic & properties of the system., 140: neither microscopic nor macroscopic properties of the system.
36	36	DU_J19_MP HIL_BIOPHY _New6july_ Q36	Thermodynamics deals with	141:macroscopic properties of the system., 142: microscopic properties of the system., 143: both microscopic & properties of the system., 144:neither microscopic nor macroscopic properties of the system.
37	37	DU_J19_MP HIL_BIOPHY _New6july_ Q37	A system of ideal gas has undergone change from one state to another state. While undergoing the change in state, the work done in a reversible process	145:Is equal to the work done in an irreversible process , 146: Is greater than the work done in an irreversible process , 147: Is lesser than the work done in an irreversible process , 148:Is either greater or lesser than the work done in an irreversible process
38	38	DU_J19_MP HIL_BIOPHY _New6july_ Q38	The First Law of Thermodynamics deals with	149:Flow of energy and its direction, 150: Increase in entropy of a system and the universe, 151:Conservation of energy during work on or by a system, 152:None,
39	39	DU_J19_MP HIL_BIOPHY _New6july_	Van der Waals distance between two molecules in a gas arises due to	153:Strong electrostatic interaction between the molecules,

		ЧЭЭ		154: Strong interaction between the nuclei of the molecules, ,
				molecules, , 156:Negligible volume of the molecules.,
40	40	DU_J19_MP HIL_BIOPHY _New6july_ Q40	Maxwell Boltzmann distribution of kinetic energy of molecules is based on	157:Random distribution of velocities., 158: Equal distribution of velocities., 159: Linear distribution of velocities., 160:Power law distribution of velocities.,
41	41	DU_J19_MP HIL_BIOPHY _New6july_ Q41	Resonance occurs when	 161:Component waves have different wavelengths., 162: Component waves have same wavelengths, but different phases., 163: Component waves have different wavelengths and same phases., 164:Component waves have same wavelengths and same phases.,
42	42	DU_J19_MP HIL_BIOPHY _New6july_ Q42	Oxygen Molecule (O2) is	165:Diamagnetic, 166: Paramagnetic, 167: Ferromagnetic, 168:None.,
43	43	DU_J19_MP HIL_BIOPHY _New6july_ Q43	Purine is	169:An aliphatic compound, 170: A homocyclic aromatic compoun, 171: A heterocyclic aromatic compoun,

				172:A heterocyclic non-aromatic
				compoun,
14	44	DU_J19_MP	Optically active organic compounds must have	173:Symmetric carbon atoms.,
		HIL_BIOPHY _New6july_		174: Asymmetric carbon atoms.,
		Q44		175: No carbon atoms.,
				176:Double bonded carbon atoms.,
45	45	DU_J19_MP	The frequencies of the following electromagnetic radiations are of the	177:Visible> ultraviolet> X-ray,
		HIL_BIOPHY _New6july_	order	178: X-ray > ultraviolet> visible,
		Q45		179: Ultraviolet>X ray> visible,
				180:X ray > visible > ultraviolet,
46	46	DU_J19_MP	The sum of the series 1,2,4,8,16,2n is	181: N ₂ ,
		HIL_BIOPHY		182: 2n,
				183: 2n-1,
		Q-10		184: None,
47	47	DU_J19_MP	Three resistors 1Ω , 2Ω , 3Ω are combined in series. What is the	185: 10 Ω,
		HIL_BIOPHY	equivalent resistance of the combinations?	186: 6 Ω,
				187: 5 Ω,
		Q 17		188:25 Ω,
48	48	DU_J19_MP	The curve $x_2/4 + y_2/9 = 1$ has major & minor axes	189:2 & 2 respectively,
		HIL_BIOPHY		190: 3 & 3 respectively,
				191: 2 & 3 respectively,
		Q.10		192:3 & 2 respectively,
49	49	DU_J19_MP	1P For a chemical reaction the Equilibrium constant is related to the	193:K= kf + kb,
		HIL_BIOPHY	Forward Rate Constant kf and Backward Rate Constant kb as below.	194: K= kf - kb,
				195:K= kf / kb,
		2.15		196:K= kf x kb,
50	50	DU_J19_MP	The total change in entropy for an irreversible process is	197:0, ,
		HIL_BIOPHY		198: Positive, ,
				199: Negative, ,
		200		200:both positive & negative.,